A study led by global medical technology company BD (Becton, Dickinson, and Co.), in collaboration with the European Molecular Biology Laboratory (EMBL), has demonstrated an innovation in flow cytometry that adds fluorescence imaging and image-based fluorescence to sort individual cells at exceptionally high speed based on the visual details of each cell, as opposed to on the type or quantity of biomarkers that are present.
Traditional methods of cell sorting through flow cytometry operate through the identification and quantification of certain biomarkers (for example, proteins) on or within a cell. The method described in the study, called BD CellView Image Technology, can capture multiple images of individual cells flowing through the system at a speed of 15,000 cells per second, and sort them based on detailed microscopic image analysis — something that was previously impossible.
The technology has applications in immunology, cell biology, and genomics research, and it could enable new cell-based therapeutic discovery.
By adding imaging to the traditional biomarker identification and quantification, the technology not only identifies if and how much of a biomarker is present in a cell, but also its location and how it is distributed within the cell. By imaging the distribution of biomarkers with this technology, researchers obtained detailed information about cells that was previously invisible in traditional flow cytometry experiments. That information enables investigation of complex biological questions, such as how cells grow, function, and interact, and/or to study the exact location of viruses or proteins within a cell, all at a highly accelerated pace.
In the study, researchers used BD CellView Image Technology to study regulators of the NF-κB (nuclear factor kappa light chain enhancer of activated B cells) pathway, a protein complex that plays an important role in cellular immunity and stress response. The EMBL team measured the activity in this pathway by tracking the location of RelA, a protein that moves from the cytoplasm into the nucleus of the cell upon activation.
Using BD CellView Image Technology, the screen allowed them to identify several novel regulators of this important cellular pathway in a matter of hours, instead of days as would be the case using conventional approaches.
The new technology fills a long-standing gap in biomedical research by enabling scientists to more rapidly view and isolate cells with specific, observable traits of interest, which can accelerate discovery research and unlock potential therapies or cures for disease in a broad range of fields such as virology and oncology.
https://www.photonics.com/AMP/AMP_Article.aspx?AID=67704
ارسال به دوستان